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Decay of Correlations in
Vibrational Relaxation

Joanna 1. Scott' and Irwin Oppenheim®
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We investigate the decay of initial vibrational correlations in a dilute gas
mixture of diatomic molecules and structureless particles. We use the
techniques of Davis and Oppenheim to derive an equation for vibrational
relaxation which is suitable for correlated systems. We then use the Landau—
Teller transition probabilities and solve for the one- and two-molecule
distribution functions and the two-molecule correlation functions. We find
that the correlations decay faster than the distribution functions, which
agrees with the results of Oppenheim, Shuler, et al. for other systems.

KEY WORDS : Vibrational correlations ; dynamics of correlations ; vibra-
tional relaxation ; master equation.

1. INTRODUCTION

The decay of initial correlations has been studied in a number of model
systems which can be treated analytically in complete detail.*~® Here we
study vibrational relaxation in a dilute, isotropic gas of diatomic molecules
and atoms with initial vibrational correlations. This system is the dynamical
analog of a system treated previously from a stochastic viewpoint.
Unfortunately, we know of no experimental method which will produce
vibrational correlations in the system studied here; the vibrational density
matrix appears to be a product of single-molecule density matrices for any
physically realizable system. The crucial factor is that the vibrational density
matrix does not depend on the positions of the molecules. Vibrational
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correlations can and do exist between individual molecules. After a collision
the molecules will be correlated for at least a mean free time. There are also
unusual circumstances® for which the molecular chaos assumption is
invalid and molecules can be correlated before a collision, but only if they
have collided in the past. These types of correlations will appear in the com-
plete density matrix for the molecules, but to obtain the vibrational part of
the density matrix, one integrates over the positions of the molecules and the
correlations disappear; the probability that two molecules selected at random
from a large system are correlated is negligible. It appears probable to us that,
in order to have correlations in any system, either the density matrix under
investigation must depend on the positions of the particles or the particles
must be fixed in a lattice.

In spite of the apparent impossibility of constructing correlated initial
conditions for vibrational relaxation, we feel that the problem is worth
studying as a model system. If we assume a correlated initial condition, we
can derive a hierarchy of equations analogous to the BBGKY hierarchy.
The main distinction is that the distribution functions in the BBGKY equa-
tions depend on the positions of the particles and correlations certainly can
exist. Bogoliubov’s® hypothesis that the n-particle distribution functions
become time-independent functionals of the single-particle distribution func-
tions after an initial short time interval has been used extensively to derive
kinetic equations and generalized Boltzmann equations for dense systems.
The validity of this hypothesis has been investigated by Green and Picci-
relli,™” and found to be at least partially true, but further investigation of the
limits of applicability is needed. It is of interest to investigate the hierarchy of
equations for vibrational relaxation and to determine how well Bogoliubov’s
hypothesis applies to correlated n-molecule vibrational distribution functions.

We first derive the hierarchy of relaxation equations for the reduced
vibrational density matrices. We follow closely the methods Davis and
Oppenheim®® used to derive the vibrational master equation, but with
important differences. They assumed that the vibrational distribution func-
tions were uncorrelated at all times and they used the molecular chaos
assumption. We assume that the vibrational distribution functions do not
factor initially and we do not use the molecular chaos assumption. The
resulting equations are valid for correlated systems and reduce to the Davis
and Oppenheim result when the correlations vanish.

The procedures we and Davis and Oppenheim use are based on the
projection operator technique of Zwanzig,” a derivation of the classical
Boltzmann equation by Mazur and Biel,*? and the Wigner function approach
to statistical mechanics.?

In later sections we study the decay of initial correlations, using the
equations we have derived. We use the superposition principle to obtain
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closed equations for the one- and two-molecule distribution functions. We
assume that the molecules are harmonic oscillators and use the Landau-
Teller transition probabilities. We solve the resulting equations and compare
the decay of the one- and two-molecule distribution functions with that of
the two-molecule correlation function.

2. THE EXACT N-BODY EQUATIONS

The system of interest here is a dilute, isotropic gas consisting of Ny,
diatomic molecules and N, structureless particles (atoms) in a volume V.
The total number of particles is N = Ny + N,.

We follow closely the procedures used by Davis and Oppenheim® to
derive the vibrational master equation and we will discuss only the points
where our derivation differs significantly from theirs.

We define the Wigner operators F¥(RY, PY, 1), the Hamiltonian H =
HM(CM) + HYu(int) + UY, the Liouville operator LY = L"(CM) +
L¥u(int) + 8", and the reduced Wigner operators F*(R", P, t) in the same
manner as in Ref. 8 except for obvious differences caused by the presence of
atoms in our system. We transform the reduced Wigner operators to a
“rotating” frame:

F#n(Rr, P, 1) = [exp(ilo"D)]EY(R™, P, 1) 6y

where L," = L,"(CM) + Lo(int), and F** is the Wigner operator in the
“rotating” frame.

Our basic equation follows fairly easily from the Schrédinger equation
in the thermodynamic limit:

8F " R P )
= — [exp(zLO"t)](?"[exp(—iﬁo"t)]F *n
———[exp(zLO"t) ZZMJMMI[exp( LR HE)]Fn+t
iN,

~7 [exp(ily")] Z Brtyin s [eXp(— LB ]G (2)
where

L F57 = 3, [ Rz dPys o Oy B 2> Go)

Lror 57 = [ AR @B B, B (3b)

Here F1,** and F2+! designate (n + 1)-particle Wigner operators where the
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first »n particles are molecules and the last particle is a molecule (M) or atom
(A), respectively. Similarly, the subscripts M and 4 on &£ and #? indicate
what types of particles are interacting.

3. REARRANGEMENT OF THE MANY-BODY PROBLEM

We are not interested in all of £, but only in the vibrational part of the
density matrix, pk,(1):

oM plsn(t) |7 ’
T f AR dP™ S {jrmro | EA(RE, PP, 1)y @)
nmn
The vibrational distribution function P"(¢) is the diagonal part of p%,(1):
Pin(t) = <™ pln(D|0™) (5)

We now define two projection operators D™ and £". For an arbitrary
operator x"
(D2 = (XM Aley”, ) 6

where ¢, is the energy of the internal state |z">; D™ discards all matrix
elements with different initial and final internal energies. This is not the same
definition that is used by Davis and Oppenheim®: Their operator D selects
diagonal elements, rather than energetically diagonal elements. The projector
2" is defined by

?n = Mn a’nDn (7)

where ‘
= §"m(P™) 1 ®)
T = (1) f dR™ dP™ T, ©)

The functions g*, *(P™), and #%» are defined in Ref. 8. " differs from the
projection operator given in Ref. 8 since the operators D" are different, but
the properties given for #" are still valid. In particular,

PrLy(int) = 0 (10)
since L,"(int) has no energetically diagonal elements.
We now derive two equations by applying #" and (1 — 2") to Eq. (2)
and use the properties of D" and £ to simplify the results. We obtain

o _ Ny

== P D Bty onlexp(—ILEROI 5
ot 2=
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_INA Z MJAn+1 exp(~1L”“t)]f"+1

N,
_l__VMgm Z gM,M,LH[eXP( LS AL

NA o Z Lrg g [exp(— LT (11

on" = —ifexp(iLy"))0"[exp(—iLy™t)}h"

ot
— ilexp(iLo"1)]0"[exp(—iLo"1)]f™

= = VDL 3, B i

A1 - P lexpliLe)] i L (12)

where we have defined
frE @B = (- gEe, P (13)
We now note that all the terms in Eq. (11) are of the form

i gﬂna—%,ﬂ lexp(—iLg* )" **

= B DT, lesp(— iy e (14)

where x"*! is either f*** or A**! and we have ignored subscripts M and A.
From the properties of 2" and D" given in Ref. 8 and Eq. (10) we see that
Eq. (14) can be written as

i(N/V)prDnT Mexpl —iL%~1(int)t1}
X "?j,n+1[exp(—iL(%,;’,n+lt)]Xn+l
= i(N/V)u"D"T {exp|+iL, ;(int)t]}
X Znr1[eXP(—iL3 41 1)}T " X0 (15)
where
Li~int) = D Loy(int) and It =]]7

k#7 k#7
1 1

If we consider matrix elements, Eq. (15) will be multiplied by a factor
exp(iw,,, t) arising from the factor exp[iLo, ,(int)t], where

Wyyr = (81) - av’)/h (16)
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We are interested only in macroscopic effects and are not interested in times
less than ¢, the mean free time of the particles. The exponential exp(iw,,,.t)
will oscillate rapidly and can be considered zero if

wvj,,j,tf > 1 (17)

For a more detailed analysis see Ref. 5 or 14. Vibrational levels are usually
widely spaced in diatomic molecules and condition (17) holds for almost all
diatomic molecules at normal densities. We will assume that Eq. (17) holds
whenever w, . # 0. This implies that the rhs of Eq. (15) becomes

]IY'M DJ $n+1[eXP( ng,j,n+1t)]Dn_l'9~n_lxn+1 (18)

We can use this result to rewrite the terms in Eq. (11).
We now “solve” Eq. (11) for £**(¢). The solution contains a propagator
G™*1(f) which is defined as the solution to

dGn +1
dt

— —iL"+1Gn+1, Gn+1(0) — 1 (19)

ie., G"*i(t) = exp(—iL™*'t). If we now substitute for A"+ in Eq. (11) and
use the property that

Dn—lg—n—-lxn+1 — X]zﬂH_an—lg'n—l (20)
for y"** = G"*(t), L™+, exp(—iL§*1t), or "1, then we obtain an equation
for f(¢):

oft  (of™\" of™\* of\

FT (5}—) + (—-9; + I 1)
where

‘afn M < a“' n—1gn—-1fn+1
7)) = T IFE 2 DT lexp (=L 5 DIDIT Y )

iN =
M nf Z M,Mn,rl Jn+1(s)
X 607 {€Xp[—iLF ; n+1(t — YD 1T YRt — 5)

N = . n-1gn-1fn
—1 = :u’n Z Djy—ngjAn+1[exp(_lL(Z),J'JH-lt)]D 7 1fA+1(t)
1
Ny § S g 2
—I—V ,u"J ds Z D,7; M,An+1Gj,n+1(S)
i=1

03 n+ 1{expl~iL3 4 a(t — HRPD 2T YR — ) (22)
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of™M\E
(_g—t_) = nf ds z D,7; MMn+lGJ',n+1(S)
X (1 - {exp[—lLO,j,n+1(t )] 7 PO VL
n+1 n+1
Fn+2 NA £ Fn
Z MMy 4ok MM -5+ V& MyAp ok MA Yt —s)

——l_l—; nf ds Z D;7; M;An+1Gf,n+1(s)

X (1 = {exp[—iL ;,n+.(t = HPFu ) D 1T

{ l:z MiMap 19 + "Z‘iyﬂ—l Mn+2] Fz;fﬁ([ - S)

N n
VA{E ngAn+2 + z‘lnﬂAnﬂ:l 7‘“Lz(l‘ — S} (23)
k=1
afn 7 N " ) . )
(a—t) B 7 Z ng-ng Mp 11 "+1(I)D 1‘/ 1h +1(0)
"ileﬂ" 2. DT 40, Gl (DT O) (24)

We will refer to (8f™/6t)y, (9f™/0t)F, and (9f™/1r) as the master term, the
remainder term, and the initial value term, respectively. Equations (22)—(24)
are still exact for pairwise additive interactions in the thermodynamic limit
when

@mint; > 1 (25)

where w.;, is the minimum vibrational frequency in the system.

4. THE DILUTE ISOTROPIC GAS

We will now make use of the assumption that the system is a dilute
isotropic gas. The singlet Wigner operator F*(z) and °¢* will be independent
of R in an isotropic gas and if ¢, and ¢, are the mean times of and between
collisions, respectively, a dilute gas satisfies the condition

tft; < 1 (26)

There are two types of processes involved in the vibrational relaxation
of our system: T-V transitions, in which energy is exchanged between the
translational and/or rotational and vibrational degrees of freedom, and V-V
transitions, in which a vibrational quantum is transferred between the
molecules. These processes give rise to two time scales: £y, which is the time
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required for the establishment of an approximate Boltzmann distribution of
the vibrational energies, and ¢y, which is the time required for complete
equilibration of the system. For most diatomic molecules in a dilute gas there
is a clear separation of time scales:

fo Kty L tyy K tpy 27N

We now define a number of parameters which will be useful in estimating
the time scales on which various terms are important:

& = tMtyy; €42 =t/ iy (28)
)‘Mz = gMztc/th = [c/tvv; )‘A2 = é:Aztc/th = tc/tTV (29)

where ¢, is the mean free time between molecule-molecule collisions, and
¢t is the mean free time between molecule-atom collisions. The parameters
Ay and A,? are directly proportional to 1/¢,* and 1/¢,4, respectively. Therefore
they go to zero in the limit of low density for any finite values of ¢,,2 and £,2.

The order of magnitude of the various terms can be estimated by the
procedures used in Ref. 8. The order of the master term is

(@frjen™ = O™ + AP (30)
The order of magnitude of the remainder term is
(afn/dt)n = O([Ay” + AyAs + /\Az]to/tf) (31)

where ¢; is the mean free time between any collisions and £, is the time, not
necessarily finite, for which the integrals in the remainder term do not change
appreciably for ¢ > #,. The remainder term can be neglected compared to
the master term if ¢, < ¢;.

An analysis similar to that used in Ref. 8 shows that 7, can be identified
with «f,, where ¢, « af, < t;, if, before a collision between particles j and
n + 1 which leads to a vibrational transition, we have

Dr AT R = gign S a1 e DI, DM bR + O(1fty) (32)

This is the condition when particle # + 1 is a molecule; the changes necessary
when particle n + 1 is an atom are obvious.
There are three sufficient conditions for Eq. (32) to hold:

1. The nonvibrational degrees of freedom must be at absolute equi-
librium except for terms of O(¢,/¢,).

2. Any time-dependent correlations among the degrees of freedom of a
single molecule must be O(¢./t,).

3. The vibrational density matrix p2;® is energetically diagonal for the
molecule or molecules involved in the collision.
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The third condition will hold if w,22¢; > 1 for all »? and #* for which
w22 # 0. This will be true for the molecules under consideration (diatomics
with large vibrational spacings) if anharmonicities are ignored.

The first two conditions require that the initial perturbation be small and
that

tov > bege 2 1y (33)

.Vibrational exchange is usually much more efficient that vibration-momentum
exchange. In some systems containing only molecules, V-V transitions may
be too frequent to allow the translational and rotational degrees of freedom
to equilibrate. If there are atoms in the system as well, it will usually be
possible to adjust the densities so that V-V transitions will be separated by
many collisions and condition (38) holds.

Under the same conditions given above, the initial value term will be of

order of magnitude
o\ % A,f] rc)
= =0||-=—+ -+~ 34
( ot ) ([ 3 Ealty (34

5. THE MASTER EQUATION

We have shown in Section 4 that under certain conditions the remainder
term and the initial value term are of higher order in the density than the
master term and can be neglected. Then

ofrjor = (of Mor)M (35)

The master term, Eq. (22), can be rewritten as an equation for the
vibrationally diagonal part of the vibrational density matrix:
aDn‘Dni .oy ¢
_—_81—2_)0 = —ilim _I}" Z MM,.+1 Jn+1(T)/‘L;f"’n+1 ]7L+1Dn ! ;1;1(1)

T

n

... N o -
—ilim 22 > DT By sy G o Ditsin s DD 1) (36)

oo i=1

where we have taken the weak coupling limit, - 00, A2 — 0, A*f finite,
A = Ay or Ay, and used the fact that

—iG?(5)6% exp(iLy%s) = (0/8s)G3(s) exp(iLy2s) (37

to perform the integrals over s.

We now use a relationship derived by Davis® for the Wigner operators
and the results of Andersen and Oppenheim? relating the Liouville formal-
ism to that of the T-matrices of scattering theory to rewrite Eq. (36). We obtain
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2 D] Aeys, o)

— M z Z Z A(v” UJ) A(gvn 1, sﬁn—l)

Up+1 I= aj nel

x { Z A(ey2, e2)[Tu, . (@2 0?5 a2, 0"2)p?(a@®, v'?)
”;,271+1
vy # vy

Vis1#EVngn
x (/%02 png ()]0, 7
— 1@, ) P (D]0'2, 7D T, (@2 02 @2, 07)]
Tomi D> > 2 Al ewd) T (@07 B %)

2 )
bin+1 ”1 nt 1 Vit
v,;évj

Vpae1#EVnaa
p? (02, v, 0 e (00" D Ty, , (B2, 0775 A, Uz)}

Z z Z A(UJ’UJ) A(%" 1, g~ 1)

{Bu(v?, v’2)<v’2 o ek ()02, Ly
— B (UIZ 2)<Un+llpzlll~lk—)1(t)‘v TL 1>}

+ Z 2 A(vy, B;) Aey-1, e -1){Ba(vy, vy)

X <UJ ’ vn 1|Pv1b(t)l’7: v 1>
— By, v)<0"| phun(t)|v;,5" 1)} (38)
where

27TNM
2 2. hH2 2
BM(UJ n+1l> Uj,n+1) - z z TM M,,+1( s U ,b » U )
0§ nt1 ¥inea

X Taip, 1, (0% 025 a2, 0P (B%, 0'%) (39)

2 N
A Z Z TM,A,,H(a v;; b2, v))

2
af nyq 05, n+l

X TM,An+1(b 5 UJ B a2= Dj).‘LQ(aza U:i) (40)

Here the T-matrices are assumed to be energetically diagonal and we have
applied the optical theorem wherever possible.

This is as simple a form as we can give for the master equation without
making important and possibly unjustifiable assumptions about p%,. For
example, if p¥,(¢) is diagonal for all ¢, the first part of Eq. (38) will vanish,
but there is no reason to expect pf;, to be more than energetically diagonal in
general. There are two special cases, however. First note that for diatomic
molecules Dpiip(2) is diagonal, Dpl,(¢) = P(z).

X

+

X

By(v;, v)) =
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Next, if we look at Eq. (38) for n = 2, we see that D?p2,,(¢) must also be
diagonal, D?p%,(t) = P2(t). This implies that Eq. (38) has a particularly
simple form for n = 1, namely

(8/01)Py, = 2. > [Bulv?, v2)Pa(t) — By(v'®, v?)P2:(1)]
Vo vy Vg’

+ D [Bawr, v:)P,, (1) — Ba(vy', 02)Py,(1)] (41)

6. INITIALLY UNCORRELATED SYSTEMS

In this section we examine the behavior of our system in the absence of
initial correlations. In particular, we will show that if a system has an un-
correlated initial state, then the system will remain uncorrelated for all times.

To show this, assume that the system is initiaily uncorrelated

0" phin(0)[0™) = H (vl poinlks O)viy = H P, (0) (42)
k=1 k=1
Let P, (1) be the solution of Eq. (41) with initial state P, (0). Then Pi~(t) =
[ T¢=1 Py, (1) is asolution of Eq. (38) with initial condition P}»~(0) = [ [k, P, (0)
since from Eqgs. (38) and (41) we find that

o O 0 o =
5 P = ]Zl ,LI Py 5 Py = 5 H P, (43)

Therefore if the vibrations are initially uncorrelated, no correlations
will ever develop. This result is the same as for systems without interactions
among the particles® and quite unlike the result found for several systems
with interactions.?®

Another consequence is that if there are no vibrational correlations in
the system, it will be completely characterized by Eq. (41) and the two-
molecule distribution functions on the right-hand side of this equation will
factor. The final result is exactly the equation given in Ref. 8 (with the
addition of a molecule~-atom term).

7. INITIALLY CORRELATED SYSTEMS

In this section we assume that there are initial vibrational correlations
and under certain assumptions develop closed equations for the distribution
functions P(t) = P*(t), P?(t) and the correlation function U(¢) defined by

U12(t) = P%z(t) - Pl(t)Pz(t) (44)

The correlation function U(t) will be zero if the two particles are uncorrelated,
and nonzero if they are correlated.
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We have noted before that Eq. (38) is not a closed equation for p¥(¢)
since it contains p%*. In order to obtain a closed equation for P2(r), we use
the superposition assumption for p$;,(1):

pEn(1, 2, N)p2in(1, 3, 1)pZin(2, 3, 1)
pein(1, Dpin(2, Dpin3, 1)

_ Pi(P(D)P3:(1)
T Pi(Po(1)P4(2) *)

Pgib(ls 25 3, t) =

Since pi(t) and p2,(¢) are diagonal, the superposition form for p2,(¢) is
diagonal. The approximation may not be valid if p%;, has important off-
diagonal terms.

We will also assume that the system is near equilibrium and linearize
our equations. We define a function p(r) by

P(t) = °P + p(¢t) (46)

where °P is the equilibrium one-molecule vibrational distribution function.
The correlation function U(¢) is zero at equilibrium, so the linearized form of
P2(¢) in terms of p(r) and U(¢) is given by

P2(1) = °P,°P, 4 °Pypy(t) + °Pypi(1) + UR(D) 47
Furthermore, Eq. (45) can be linearized to give
Pgib(la 2,3, t) = 0P10P20P3 + OPles + 0P2U13 + OP3U12 (48)

We find an equation for P(f) by recasting Eq. (38) in terms of p(¢) and
U(t) and linearizing. We obtain

d ,
7P = > D ABy@? v D[Py, Py + °Puypuy + Py Puy + Upyry]

vg v1'vg’

- BM(Ulza vz)[OPv10Pv2 + onlpvz + onzpvl + leuzl}
+ > {By(v1, 0, )°Pyy + poy] = Ba(v', 0)[°Py, + P, (49)
vy’

Then we use Eqgs. (47) and (48) in Eq. (38) for n = 2 and obtain a linearized
equation for P2(z) in terms of U(¢) and p(r). We use this result and Eq. (49)
in the relation

dUlz_dP%2
dt — dt

P,
dt

ap;
dt

~-p%2_p, (50)
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and obtain a linear equation for U(¢):

d /
Zi—t Uv1v2 = Z Z {BM(U%:}: Ul%)[Pvl'Uvzvg' + Pvg’le’vz]

v3 v1'v3”
- BM(U,H%’ U%S)[Pvl Uv2v3 + Pv3 levz]}
+ 2 > (Bultds, APy Unuy + PoyUsyoy]

vz vg’,v3"

- BM(U,Zga U%S)[Pvz Uv1v3 + Pualevz]}
+ D {Ba(01, 0 VUppoy — Ba(vi, v2)Usi}
vy’

+ D {Bu(r, 02y — Bavd, 1)Uy, (51)
v’

We now have, in Egs. (49) and (51), a complete set of equations for U(z) and
p(0).

8. HARMONIC OSCILLATORS

So far we have made no assumptions about the transition probabilities
B, and B,. We will now assume that the molecules are harmonic oscillators
and use the Landau-Teller approximation for the transition probabilities?®:

By(vlz, 035) = Bi{vi(va + 1) A1, v — 1) A(Bs, 05 + 1)
+ (vy + Doy A(@,, vy + 1) A(By, vy — 1)}
+ Byo{vyy ATy, vy — 1) A(By, v,)
+ (v + D A@, v, + 1) A(Ds, vg)
+ vay A(Dy, v3 — 1) A(By, vy)
+ (vy + 1) A(Dy, vy + 1) A(By, vy)} (52)
and
By(vy, 51) = Ba{vyy MA@, v, — 1) + (01 + D A[Dy, 00 + 1} (53)

where y = exp(—phw,), wy = (&1 — ey)/f, the vibrational frequency, and the
constants B,, B, and By are defined by

B, = By(10,01) = By (01, 10)
B, = By,(00, 10) = B,(00, 01) (54)
B3 = BA(Oa 1)

Note that by the definitions in Egs. (39) and (40), B,, B,, and B; contain a
density factor, Ny,/V or N,/ V.

For a harmonic oscillator the energy levels are e, = #wyv. Hence the
equilibrium distribution functions °P, are

°P, = [exp(—Plia))/> exp(—phagw) = (I — y)y* (55)
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The functions p(t) and U(r) have the following properties, which follow
directly from the definitions and standard properties of distribution functions:

2 pt) =0 (56)
2 Uni) = 2. Uypy() = 0 (57)

If we now use the Landau-Teller transition probabilities in Eq. (51), use
Egs. (55)-(57), and define the function Q,(¢) by

00, (1) = D 03U, (1) = 2 03U, (1) (58)

we can perform the sums over v; and obtain

du,

VyVg

dt

C
1 — ’)/{(Ul + I)Uu1+1,v2 - [vl(l + V) + V]levg + ')’UlUv1~1,v2

+ (U2 + I)Uulv2+1 - [UZ(I + ')’) + V]levz + yngv1v2~1}
+ (¢ — a1 — D" Mol = 9) — PGy + y277
x ol = 9) =90, (59)

where
a=(1-y)Y(B: + By) (60)

¢ =By +a=B + {1 —y)(B; + By) (61)

In general we have ¢ > a > 0. Notice that a depends only on T-V transition
rates and will be zero if T-V transitions are not allowed. The constant ¢
depends on both T-V and V-V transition rates.

We do not have a closed equation for U(¢) since it depends on Q,(2).
We reduce Eq. (59) to an equation for Q, by multiplying both sides by v,,
summing over all v,, and using the fact that

2 00=2 213Uy, =0 (62)

We obtain o
do, c
dt = 1 — {(U + 1)Qv+1 - [U(l + ')’) + '}’]Qv + ')’UQv—l} - an
Y
+ (¢ — a)(1 — )" ol — y) — y] AQ®) (63)
where

AR = 2 00,(1) = D 003Uy, (0) (64)

v V1Py
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Finally we obtain an equation for A(r) by multiplying both sides of Eq. (63)
by v and summing over v:
dA@)/dt = —2a A(t) (65)

Equations (59), (63), and (65) form a closed set of coupled linear equations
for U, Q, and A,

Similarly we obtain an equation for p(¢) by using the Landau-Teller
probabilities in Eq. (49) and performing the sums over v,. We find

(;i& c

i = 1 — '}/{(v + l)pv+1 - [(1 + 7)0 + 7]pv + ')’Upv—l}
+(c—a{lv+ D0y — Qv + DOy + 10,
+ (1 = > 1 =y — y]E@)} (66)
where
B0 = 3w, = =0 (67)

The new function E(t) is thus proportional to the difference between the
average vibrational energy of a molecule at time ¢ and the equilibrium average
vibrational energy. An equation for E(¢) is obtained by multiplying both
sides of Eq. (66) by v and summing over all v:

dE(t)/dt = —aE(1) (68)

We now have in Egs. (59), (63), (65), (66), (68), and (47) all the equations
needed to find P(z), P3(¢), and U(z).

9. ASYMPTOTIC SOLUTIONS? FOR P, P2 AND U
First we can easily solve Egs. (65) and (68) for A(¢) and E(¢):

A1) = A(0)e~2et (69)
E(t) = E(0)e~¢ (70)
Then we substitute for A(z) in Eq. (63) to obtain
G e+ DO = [0+ )+ 7100}~ al,
+ (¢ = a) AO)(T — P Mol = y) — yle (71)

We will solve for 0, by a generatin'g function technique. We define a generat-
ing function =(z, t) by

w(z, 1) = > Q)7 (72)

2 A more detailed version of these calculations is given in Ref. 14.
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It satisfies the following equation:

om c om c
Frial e Ul e Db a+————1~y(1—2)]w
o 1=z o
— (e —a)20)1 - ) T =22 ¢ (73)

The solution of Eq. (73) for initial condition #(z, 0) is

(=l —yz = (A = 2)e"*)[1 - yz — y(1 — 2)e"%], 0)
I —yz— vyl —z)e

w(z, t) =

1 -z

= AO)I = »)*q (e72% — e7"e™") (74)

We can find explicit forms for Q,(¢) from Eq. (74) by using the inverse of
Eq. (72),

v

00 = oy (e )| 5)

First we expand the first term of Eq. (74), using Eq. (72), and obtain

at S [L~yz = (1~ 2)e "
1 =9ee 3 0nl0) =5 T e (76)

We then expand this in a power series in e~ * and obtain

1 —pes> > }Z Qm(o)(’;:) (Z)

n=0m=0

(I =2z»
(1 — ,yZ)TL+1'
where () and (}) are binomial coefficients. If we now take the appropriate
z derivatives, we obtain

=33 5 > IR

X Qm(())(__l)k+l(1 - ,y)k+l+1,yn—k+v—levncte—at
+ AT = )%y o(l — y) — vl — e~ e ") (73)
We are interested only in the asymptotic behavior of Q,(1). Since ¢ > a,

the only term in the sum over » in Eq. (78) that contributes to the asymptotic
solution is n = 0. For n = 0 we obtain

X (=11 — y)eynt e "t (77

> QuO1 = e =0 19)
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Therefore the asymptotic solution for Q.(¢) is

0u(1) ~ AT — )"~ ol — y) — yle™®* (80)
We now use Egs. (80) and (70) in Eq. (66) for p(t) to obtain

d
Gl = 7= 0+ Dpocs = (0 + ) + ¥lps + vope}
+ (¢ — af{EQO)1 — »)»*~ ol — y) — yle™®
+ AO)T — y)Py" P[0 — »)Pu( — 1) — 4y(1 — yv + 2y]e">%
(81)
This equation is solved in exactly the same manner as Eq. (71) for Q,(¢). The
result is

pi) = Z Z Z ZPm<0>( )( )( )(?>

X (_l)k+1(1 _ ,}/)k+l+1,yn k:,yv Ze—nct
+ EO)Y1 — )% ol = y) — yle™® — €%
+ A1 = 21 =y — 1) — dy(1 = y)o + 297]

X (e—Qat — e~20t) ] (82)
The asymptotic solution is
pot) ~ EQ)(1 — y)*y* Mol — y) — yle™® (83)

We now return to Eq. (59) for U,,,,(f) and use the asymptotic solution,
Eq. (80), for Q,(¢) to obtain

éz’Uulv c
__dl—_z = T — y{(vl + I)UU1+1,U2 [vl(l + 7) + ’)’ v3Ug + ')’UlUul 1,vg

+ (172 + I)UU11)2+1 - [U2(1 + ')/) + }’]Uulvz =+ ')’Uzlevz—l}
+ (¢ = a2 A1 — »*yifo(1 = y) = 7]
X yPafvg(l — y) — yle™ 2% (84)
We define a generating function I'(y, z, ) by
T(y,2,1) = D Uyp,(t)y"iz% (85)
109

For initial condition I'(y, z, 0) we find the generating function to be

Coepflmw (A =pet 1 —yz— (1 ~z)e
SR Ve e e T
=y —vd — el —yz — y(1 = z)e™]

R 1 — - 2at —2ct
+ AQO)1 ~ ) A =2 - ‘yZ)2 (e — e %

T(y,zt) =
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i

> 00 (1) - = ey
><[I—y (1 ~2r a -y 1—2]
T=wP (@ =y " @ =7 (0 = 52p

X (e—-at _ e—ct)e—nct (86)
We obtain U,,,,(¢) explicitly by using the relation
1 0% 1 0%
Uppoo(t) = 5.1 8y 5,1 57 I(y,z 1) e 87

with the result

20 o0 2

Uit = 5 5 5 33 ZZZ

n1=0 ng=0 my=0mg=0k1=0ka=011=012=0

my\ (my) (11 (75 [\ (B2) (01 (Vs
* Umlmz(o)(kl) ( kZ) (kl) (kz) (Il) (12) (11 ) (12 )
X ('—I)k1+ll+k2+l2(1 — ’}/)k1+ll+k2+12+2
X yM T Eiya ~koyty ~liyva ~lag— (g T ng)ct
+ A0)1 — »)*yva(1 — yIyP2[oa(l — y) — y)(e™2% — 7% (88)

The sums over n, and n, in Eq. (88) will be zero unless #; > 1 and n, > 1;
therefore the first term is of order e~ 2%, The asymptotic solution for U(?) is
thus
Uppoo() ~ DO)A = )Py [02(1 — 9) — yly*2[va(1 — ) — yle™2*
~ Py, (1) Pu,(1) (89)
Finally we can find the asymptotic behavior of P2(¢) from Egs. (47), (83), and
(89):
Pi%luz(t) - onlonz ~ OPvlpvz(t) + OPvgpvl(t)
~ EQO)1 — 9y o1 — ) = v]
+ 2 M og(1 — y) — p)le (90)
Therefore we have shown that the correlation function U(t) decays at a
faster rate asymptotically than the distribution functions P(¢) and P3(¢).

10. CONCLUSIONS

In the last section we showed that for harmonic oscillators the distribution
functions and correlation function decay asymptotically as follows:

P2(t) — °P,°P, >0 as [P(t) - °P]~ e ™
U(t)—0 as [P(t) — °P]2 ~ ™2 on
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This agrees with the results obtained by Oppenheim ef al.*? for other
systems.

We have made many assumptions in deriving Eq. (91). Among other
things, we have assumed that the master equation (38) is valid for the system.
One important condition is that

Z‘VV > Z‘rot 2 ttrans (92)

We can increase fyy relative to 7, by decreasing py/pa = Ny/N4, the ratio
of the density of molecules to that of atoms. For any system at a given
temperature and pressure there is a maximum value of p,,/p, above which the
master equation will no longer be valid.

If the molecules are infinitely dilute in atoms, this corresponds to the
special case of ¢ = a = (I — y)B;, where B; is the transition rate for T-V
transitions in a molecule-atom collision. The asymptotic solutions Eq. (91)
do not change in form since they depend only on a, not on c.

The other special case of interest occurs when a = 0, in which case only
V-V transitions are allowed. This might occur, for example, at very low
temperatures. The distribution functions and the correlation function do not
relax to absolute equilibrium (vibrational temperature equal to translational
temperature) if ¢ = 0. For harmonic oscillator with only V-V transitions,
the average vibrational energy of the molecules cannot change. This is
reflected in Eq. (70), where E(t) = E(0) for a = 0. The more surprising
result is that A(r) = A(0) for @ = 0 and the system will remain correlated for
all times if A(0) # 0. This is a consequence of our assumption that the
molecules are harmonic oscillators.**

Our basic equations for vibrational relaxation are given in Section 3.
In Eq. (38) we have a hierarchy of equations similar to the BBGKY hierarchy.
For the BBGKY hierarchy, Bogoliubov proposed that after an initial short
time the n-particle distribution functions become time-independent func-
tionals of the one-particle distribution functions.®

We now investigate the validity of this hypothesis in vibrationa] relaxa-
tion. First we note that from the definitions

%2(1) = UIZ([) + Pl(t)Pz(t)
= U(t) + °P1°Py + °Pipo(t) + OPapi(t) + pi(8)pa(t)
93)
From Egs. (83) and (91), we see that
Piy(t) ~ °P1°Py + °Pipy(1) + °Pypi (1) (94)

If asymptotically we use Eq. (94) in Eq. (41) we obtain a closed, asymptotic
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equation for P(¢)
dP,,jdi = 3 > {Bu(o?, 03[P, puy + °Puypuy]

V2 y2
- BM(U’25 02)[0Pu1pv2 + OPvzpvl]}
+ D {Bu(v1, v,)P, — By, v:)P, )} (95)

vy’

This, with the addition of a molecule-atom term, is the linearized version of
the vibrational master equation given in Ref. 8.

Equations (94) and (95) show that Bogoliubov’s hypothesis is true for
vibrational relaxation, but the time scales involved are much longer than he
had proposed. Since the relaxation time for the vibrational correlations is
1/2a while the relaxation time for the system is 1/a, there is no clear separation
of time scales. This occurs, again, because we have focused our attention on
quantities which do not depend on center-of-mass positions. The equations
that we have derived contain a description of vibrational relaxation only and
there is essentially only one time scale (1/a) involved.
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