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We investigate the decay of initial vibrational correlations in a dilute gas 
mixture of diatomic molecules and structureless particles. We use the 
techniques of Davis and Oppenheim to derive an equation for vibrational 
relaxation which is suitable for correlated systems. We then use the Landau- 
Teller transition probabilities and solve for the one- and two-molecule 
distribution functions and the two-molecule correlation functions. We find 
that the correlations decay faster than the distribution functions, which 
agrees with the results of Oppenheim, Shuler, et al. for other systems. 

KEY W O R D S  �9 Vibrat ional  corre lat ions ; dynamics  of  cor re la t ions ; v ibra- 
t ional  re laxat ion ; master equat ion.  

1. INTRODUCTION 

The decay o f  ini t ial  cor re la t ions  has been s tudied in a number  of  mode l  
systems which can be t rea ted  analyt ica l ly  in comple te  detail/1-4~ Here  we 

s tudy v ibra t iona l  re laxa t ion  in a dilute,  i so t ropic  gas o f  d ia tomic  molecules  
and  a toms  with init ial  v ib ra t iona l  corre la t ions .  This system is the dynamica l  
ana log  o f  a system t rea ted  previous ly  f rom a s tochast ic  viewpoint .  

Unfor tuna te ly ,  we know of  no exper imenta l  me thod  which will p roduce  
v ibra t iona l  corre la t ions  in the system studied here;  the v ibra t iona l  densi ty 
mat r ix  appears  to be a p roduc t  of  s ingle-molecule densi ty  matr ices  for  any  
physical ly  real izable  system. The  crucial  fac tor  is tha t  the v ib ra t iona l  densi ty 
mat r ix  does not  depend  on the  pos i t ions  of  the molecules.  Vibra t iona l  

Supported in part by the National Science Foundation. 

1 Department of Chemistry, Massachusetts Institute of Technology, Cambridge, 
Massachusetts. 

51 

�9 1974 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of  this publica- 
tion may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, photocopying, microfilming, recording, or otherwise, without written permission of  the publisher. 



52 Joanna I. Scott  and Irwin Oppenheim 

correlations can and do exist between individual molecules. After a collision 
the molecules will be correlated for at least a mean free time. There are also 
unusual circumstances <5~ for which the molecular chaos assumption is 
invalid and molecules can be correlated before a collision, but only if they 
have collided in the past. These types of correlations will appear in the com- 
plete density matrix for the molecules, but to obtain the vibrational part of 
the density matrix, one integrates over the positions of the molecules and the 
correlations disappear; the probability that two molecules selected at random 
from a large system are correlated is negligible. It appears probable to us that, 
in order to have correlations in any system, either the density matrix under 
investigation must depend on the positions of the particles or the particles 
must be fixed in a lattice. 

In spite of the apparent impossibility of constructing correlated initial 
conditions for vibrational relaxation, we feel that the problem is worth 
studying as a model system. If we assume a correlated initial condition, we 
can derive a hierarchy of equations analogous to the BBGKY hierarchy. 
The main distinction is that the distribution functions in the BBGKY equa- 
tions depend on the positions of the particles and correlations certainly can 
exist. Bogoliubov's (6~ hypothesis that the n-particle distribution functions 
become time-independent functionals of the single-particle distribution func- 
tions after an initial short time interval has been used extensively to derive 
kinetic equations and generalized Boltzmann equations for dense systems. 
The validity of this hypothesis has been investigated by Green and Picci- 
relli, (7~ and found to be at least partially true, but further investigation of the 
limits of applicability is needed. It is of interest to investigate the hierarchy of 
equations for vibrational relaxation and to determine how well Bogoliubov's 
hypothesis applies to correlated n-molecule vibrational distribution functions. 

We first derive the hierarchy of relaxation equations for the reduced 
vibrational density matrices. We follow closely the methods Davis and 
Oppenheim (5,8~ used to derive the vibrational master equation, but with 
important differences. They assumed that the vibrational distribution func- 
tions were uncorrelated at all times and they used the molecular chaos 
assumption. We assume that the vibrational distribution functions do not 
factor initially and we do not use the molecular chaos assumption. The 
resulting equations are valid for correlated systems and reduce to the Davis 
and Oppenheim result when the correlations vanish. 

The procedures we and Davis and Oppenheim use are based on the 
projection operator technique of Zwanzig, (9~ a derivation of the classical 
Boltzmann equation by Mazur and Biel, (1~ and the Wigner function approach 
to statistical mechanics. (11) 

In later sections we study the decay of initial correlations, using the 
equations we have derived. We use the superposition principle to obtain 
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closed equations for the one-and two-molecule distribution functions. We 
assume that the molecules are harmonic oscillators and use the Landau- 
Teller transition probabilities. We solve the resulting equations and compare 
the decay of the one- and two-molecule distribution functions with that of 
the two-molecule correlation function. 

2. THE EXACT N - B O D Y  E Q U A T I O N S  

The system of interest here is a dilute, isotropic gas consisting of NM 
diatornic molecules and NA structureless particles (atoms) in a volume V. 
The total number of particles is N = NM + NA. 

We follow closely the procedures used by Davis and Oppenheim (8) to 
derive the vibrational master equation and we will discuss only the points 
where our derivation differs significantly from theirs. 

We define the Wigner operators FN(RN, pN, t), the Hamiltonian H = 
HoN(CM) + HNM(int) + U N, the Liouville operator L N = LoU(CM) + 
Lu~(int) + O N, and the reduced Wigner operators _P~(R ~, P", t) in the same 
manner as in Ref. 8 except for obvious differences caused by the presence of 
atoms in our system. We transform the reduced Wigner operators to a 
"rotating" frame: 

ff*~(R", P~, t) = [exp(iLo~t)]ff"(R ", P", t) (1) 

where Lo ~ = Lo"(CM) + L0"(int), and P*" is the Wigner operator in the 
"rotating" frame. 

Our basic equation follows fairly easily from the Schr6dinger equation 
in the thermodynamic limit: 

0/?*" 
et (R~' P"' t) 

= - i[exp(iLo"t)] 0"[exp(- iLo~t)]_P *" 

iNu [exp(iLo"t)] ~ ~, r~ .r  iL.+lt~lff*~+l V M j M n + I L ~ A I ~ \  - O , M  }J  M 
] = 1  

iNA [exp(iLft)] ~ 2eMjA.+ z[exp(-- iL~+A~t)]F *~+1 (2) 
V i = 1  

where 

~M #.+1 ~ IdR.+zdV.+l(z .+102 jM.+I"M ---- I M,~.+IF~'+IIZ.+I) (3a) 
Zn + 1 

~. #.+1 f dR.+l dP.+l 02 #.+1 (3b) M ] A n + I I  A ~ M j A n + l  Jt A 

Here P~+ 1 and _P]+I designate (n + t)-particle Wigner operators where the 
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first n particles are molecules and the last particle is a molecule (M) or atom 
(A), respectively. Similarly, the subscripts M and A on 2~ ~ and 0 2 indicate 
what types of particles are interacting. 

. R E A R R A N G E M E N T  O F  T H E  M A N Y - B O D Y  P R O B L E M  

We are not interested in all of if", but only in the vibrational part of the 

where 
~- - ~ - $ - ( e - ) J y .  (8) 

~"  -- (1/VD f dR" dP" Tr~ot (9) 

The functions ~ ,  ~"(P"), and J ~ ,  are defined in Ref. 8. ~ differs from the 
projection operator given in Ref. 8 since the operators D" are different, but 
the properties given for ~ are still valid. In particular, 

~'L0~(int) = 0 (10) 

since L0"(int) has no energetically diagonal elements. 
We now derive two equations by applying ~ "  and (1 - ~")  to Eq. (2) 

and use the properties of D" and ~ "  to simplify the results. We obtain 

ofn = i N ~ ,  ~ ~ ' �9 n+z ,+1 
~----i- M,M, +, [exp( -- tLO.M t ) ] f  ~ 

J = l  

density matrix, pv~ib(t): 

<v"lp~,b(t)[~"> 

= ( 1 / w ) f  dR" alP" ~. <j"rn~v~lP"(R ", PL t)l j"rn~ n} (4) 
jnmn 

The vibrational distribution function P"(t) is the diagonal part of p~ib(t)" 

P'~,(t) = (v~lt;~fft)[v ~} (5) 

We now define two projection operators D" and ~".  For an arbitrary 
operator X" 

(z~ID~x"I2") = (z"lx"[5") A(e~", ee") (6) 

where e~" is the energy of the internal state Iz"}; D" discards all matrix 
elements with different initial and final internal energies. This is not the same 
definition that is used by Davis and Oppenheim(8>: Their operator D selects 
diagonal elements, rather than energetically diagonal elements. The projector 
~ "  is defined by 

~n =_ f f"Y"D" (7) 
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iNav ~ 2 ~C~M,A.+* [exp(-iL~,51t)]f '~+ 
j = l  

9- :2 - - t  ~ n  ~.%OMjM. + z [ e x p (  �9 n + l  n + l  

. i=l  

_l._.~ ~ ~,, r~ l "  iL.+lt~lh~+l (11) MjAn+l[.~Atdk. - ~  O,A )J A 
i = 1  

~h,~ 
a---i- = - i[exp( iL~ ) ]On[exp(- iL~ ) ]h~ 

- i[exp(iLont)] 0~[exp(-  iLo"t)Jf n 

- i - ~  (1 - ~n)[exp(iLo"t)] ~ ~M,M. + **e"+aM 
] = 1  

. N ~  
- z --~ (1 - ~)[exp(iLont)] ~ X~,MjA,, + ~*e"A +1 (12) 

1 = 1  

where we have defined 

f n  = s a n = (1 - ~@,)p.n, /?*= = f -  + a n (13) 

We now note that  all the terms in Eq. (11) are of  the fo rm 

N rb i -~ .~  ~'j,.+ l[exp(-iL~+ lt)])r * 

N n - n ~7-n = i p t z  D ~ ~.,n+l[exp(-iL'~+lt)lx n+l (14) 

where x n+l is e i t h e r f  "+1 or h n+l and we have ignored subscripts M and A. 
F r o m  the propert ies  of  ~n  and D n given in Ref. 8 and Eq. (10) we see that  
Eq. (14) can be writ ten as 

i ( N / V) /~DnY"{exp [ - iL'~ - l(int)t]} 
x ~ , n  +1 [ e x p ( -  iL2o,j,n + it)Ix n +1 
= i(N/V)/*"DnYj{exp[ + iLo,j(int)t]} 

x ~ . , .  +1 [exp( - iL2o,j,. + t t ) ] J  TM - 1Xn +1 

where 

L~- l ( in t )  = ~ Lo,~(int) and y . - 1  = ~ Y k  
k . c j  k C j  

1 1 

I f  we consider matr ix  elements, Eq. (15) will 
exp(io%wt ) arising f rom the factor  exp[iLo,j(int)t], where 

0 5 )  

be multiplied by a factor  

o, vo, = (~v - ~ , ) / h  (16) 
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We are interested only in macroscopic  effects and are not  interested in times 
less than t I, the mean free time of  the particles. The exponential exp(io%~,.t) 
will oscillate rapidly and can be considered zero if 

o % ~ / r  >> 1 (17) 

For  a more  detailed analysis see Ref. 5 or 14. Vibrational  levels are usually 
widely spaced in diatomic molecules and condit ion (17) holds for almost  all 
diatomic molecules at normal  densities. We will assume that  Eq. (17) holds 
whenever o%~; # 0. This implies that  the rhs o f  Eq. (15) becomes 

N n 2 i ~/~ D j J - ~ , ~  + ~ [ e x p ( -  iLo,j, ,  + ~t )]D"-  ~9 -'~- ~X ~ + 1 (18) 

We can use this result to rewrite the terms in Eq. (11). 
We now " s o l v e "  Eq. (11) for h" + x(t). The solution contains a p ropaga tor  

G" + 1(0 which is defined as the solution to 

dGn + I 
- iL"+IG ~+~, G"+I(0) = 1 (19) 

dt 

i.e., G~+l(t)  = e x p ( - i L " + ~ t ) .  I f  we now substitute for h "+1 in Eq. (11) and 
use the property that  

D" - z3-"-  iX~ + 1 = Xj,~+ 1 ~ 2  n ~ -  lor.~. - 1 (20) 

for x" + ~ = G" + z (t), L" + ~, e x p ( -  iL~ + ~ t), or ~ + ~, then we obtain an equation 
f o r f " ( t ) :  

U3" U3" U3' ~ 
- = \ e t l  + \ e t !  + \ e t !  

(21) 

where 

( ~f .~M = . ~ k~,~ 2 DsJ~J~M," ,+~[exp(- iL~. ' ,  '~+It)]D'~-13-'~-If~+1(t) ~t ] - I  s=l 

iNM tx ~ ds Dj~J-j.~-C~M,M, + ~ G~.. +1 (s) 
V ] = 1  

2 �9 2 • 0j,, + l {exp[ -  iLo,j, ,  + l( t  - s)]}D"- 13-"- l f i+  l(t - s) 

- i - N ~  tz'~ 2 DyJs'~M,A,+I[exp( -;r2,'~o,y,n+l~)a'-'aann-lJn-lrn+l(taa a , , 
J = l  

NA . f~ 
j = l  

x O~, .+l{exp[-iL~. j ,~+~(t  - s ) ] }D~- lo~ '~ - l f2+l ( t  - s) (22) 
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~t ] /~ J ' j = l  

x (1 - {exp[--iL2d,n+l(t -- s ) ]}~ ,n+ l )D~- l~  - " - 1  

" .+2  S~, P ~ + l : t  - s )  x YM~M.+2F~z (l  -- S) ~- MicAh +2 MA k 
/c=l /c=l 

- -  i T t*~ ds  n J ; ~ ,  ~ 2  "-v J MjA,+p,j,,+I(S) 
j = l  

s~1~.~2 ~D ~- ~3--~ 1 x ( 1 -  {exp[-- iL~d,~+l( t -  jjj j,~+1i 

X - - ~  ~M,Mn+2 ~- ~(tPAn+l,Mn+2 F~M (t -- S) 

NA [ + 5fM~a.+2 + 5~ ] #" + 2~. _ S} "~ --V [ ~ I  An§ ~t AA , t  (23) 

at ] -- i t ~ DJ~jS~M,M. +~a~.. + ~(t)D ~- ~3 TM- ~h5 + 1(0) 
j= l  

- i - ~  t z" ~ Dj~-~j~LfMjA.+ ~z l , '~n.-xJ-,~-lt , .+ i(0 ) (24) l U],n + 1%L ) ~ It A 

Y=I 

We will refer to (Ofn/~t)M, (Of~/Ot) R, and (Of"/Stf  as the master term, the 
remainder term, and the initial value term, respectively. Equations (22)-(24) 
are still exact for pairwise additive interactions in the thermodynamic limit 
when 

c o ~ t f  >> 1 (25) 

where o ~ n  is the minimum vibrational frequency in the system. 

4. THE DILUTE I S O T R O P I C  GAS 

We will now make use of  the assumption that the system is a dilute 
isotropic gas. The singlet Wigner operator Fl(t)  and 0gl will be independent 
of  R in an isotropic gas and if tc and tf are the mean times of and betweefi 
collisions, respectively, a dilute gas satisfies the condition 

tc/t~ << 1 (26) 

There are two types of processes involved in the vibrational relaxation 
of our system: T-V transitions, in which energy is exchanged between the 
translational and/or rotational and vibrational degrees of  freedom, and V-V 
transitions, in which a vibrational quantum is transferred between the 
molecules. These processes give rise to two time scales: tvv, which is the time 
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required for the establishment of  an approximate Boltzmann distribution of 
the vibrational energies, and tTv, which is the time required for complete 
equilibration of the system. For most diatomic molecules in a dilute gas there 
is a clear separation of time scales: 

tc << tr << tvv << tTv (27) 

We now define a number of parameters which will be useful in estimating 
the time scales on which various terms are important:  

~M 2 = tsM/tvv; ~A 2 = oA/tTv (28) 

AM 2 = ~M26/tl M = t~/tvv; ~a 2 = ~ a 2 t c / t f  A = tc/t~v (29) 

where t; M is the mean free time between molecule-molecule collisions, and 
t~ A is the mean free time between molecule-atom collisions. The parameters 
AM 2 and hA 2 are directly proportional to 1/tr M and 1/ti A, respectively. Therefore 
they go to zero in the limit of low density for any finite values of ~:M 2 and ~:A 2. 

The order of magnitude of the various terms can be estimated by the 
procedures used in Ref. 8. The order of the master term is 

(af~/at)  M = O(2~n 2 + hA 2) (30) 

The order of magnitude of the remainder term is 

(af"/dt)  ~ = O([AM 2 + AMAA + hA2]to/tl) (31) 

where t s is the mean free time between any collisions and to is the time, not 
necessarily finite, for which the integrals in the remainder term do not change 
appreciably for t > to. The remainder term can be neglected compared to 
the master term if to << 0.  

An analysis similar to that used in Ref. 8 shows that to can be identified 
with c%, where tc << ~tc << t~, if, before a collision between particles j and 
n + 1 which leads to a vibrational transition, we have 

D ~ - z j - ~ - I F } + I  2 2~ 2 ~-~ "+~ 0 ( 6 / t l )  (32) = gjg~+13j ,~+lJs  D~, ,+ID ovib + 

This is the condition when particle n + 1 is a molecule; the changes necessary 
when particle n + 1 is an atom are obvious. 

There are three sufficient conditions for Eq. (32) to hold: 

1. The nonvibrational degrees of freedom must be at absolute equi- 
librium except for terms of O(6/tr) .  

2. Any time-dependent correlations among the degrees of freedom of a 
single molecule must be O(tc/tl). 

3. The vibrational density matrix "+~ O~b is energetically diagonal for the 
molecule or molecules involved in the collision. 
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The third condition will hold if ~ o ~ t ;  >> 1 for all v 2 and g2 for which 
~%%~ ~ 0. This will be true for the molecules under consideration (diatomics 
with large vibrational spacings) if anharmonicities are ignored. 

The first two conditions require that the initial perturbation be small and 
that 

tvv >> t~ot > ts (33) 

Vibrational exchange is usually much more efficient that v ibra t ion-momentum 
exchange. In some systems containing only molecules, V-V transitions may 
be too frequent to allow the translational and rotational degrees of  freedom 
to equilibrate. I f  there are atoms in the system as well, it will usually be 
possible to adjust the densities so that V-V transitions will be separated by 
many collisions and condition (38) holds. 

Under the same conditions given above, the initial value term will be of 
order of  magnitude 

(~f n~I Ot[~M2 ~A 2] (34) 

5. THE MASTER EQUATION 

We have shown in Section 4 that under certain conditions the remainder 
term and the initial value term are of higher order in the density than the 
master term and can be neglected. Then 

af" /a t  = (afn/St)  M (35) 

The master term, Eq. (22), can be rewritten as an equation for the 
vibrationally diagonal part of  the vibrational density matrix: 

n n  N M ' ~  o7- 2 
~D pv~, = - i  lim --~- ~,  Dy~']~(~M~M~+IG~.n+I(T)tz#zn+ID~.. + 1L'r~n-lpvibn+ l(~a~.) 

8t r~,o 7 = 1  

- i  lira Dj j~M,A.+~Gj.n+z(T)tzjtxn+IDjD pvib(t) (36) 
T ~ o o  f = l  

where we have taken the weak coupling limit, t - +  o% t2--+ 0, h2t finite, 
'h = AM or AA, and used the fact that 

- iG2(s)O 2 e x p ( i L f s )  = (8/Ss)G2(s) exp(iLo2s) (37) 

to perform the integrals over s. 
We now use a relationship derived by Davis (5~ for the Wigner operators 

and the results of  Andersen and Oppenheim a2~ relating the Liouville formal- 
ism to that of  the T-matrices of  scattering theory to rewrite Eq. (36). We obtain 
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• 

+ 

X 

+ 

X 

+ 

X 

where 

2 t2 
B M ( V M  + ~ , VAn + ~) = - -  

i - ~  ~ ~ ~ A(vj,~j) 2x(e~.-~,eo.- 0 
Vn+ I ]=i a~,n+l 

~ A(ev'2, /.22; a 2, v'2)/~2(a ~, v '2) ev2)[TyliMn + l (a 2, 

v~ # v.t 
t 

V n + l q = v n + l  
t2 n - 1  n + l  2 <O /) [Pvib ( t ) l l )  , ~ n - l >  

~=(aO., v~)<v~+ l lp~a( t ) l v ,2  ' -~- ~ + 2 . v >T~ ,M,+I (a  , v '2 , a 2, v2)] 

t2  H2 
b~,n + l v l , n  + l V f , n  + l 

, tz 
Vjq=Vj  

t H 
v n + l q = V n +  1 5 

J- n + l  t t 2 - n -  1 + 2 . U 2 ) ~  t*~(b 2, v'D<v'L v '~- lP,,~b (t)lv v > r ; j M . + z ( b  , v "2, a 2, 
) 

n-i n+l t2  {BM(~ ~, v'2)<v '2, v ]Pv~ (t)l, , ~-~> 
B~(, '~, v2)<v ~ + ~[ p~ ~(t)! v 2, ~" - ~>} 

22/'(~;, ~) A(~-I, ~.-~){8~(~, v~,) 
] = 1  v~ 

<v;', v"- ~1 p~( t )  l v/, ~ -  ~> 
(38) 

v ~ ~ VM'M~162 
~,,+ 1 q,,+l 

• T~,M~+I(b 2, v'2; a 2, v2)/~2(b2, v '2) (39) 

2~r N A 
z~(~, ~/) - v ~ ~ TM" ~+~(~2' ~; b2, ~/) 

q.,+~ q.,+~ 
• T~jA, +~(b ~, v / ;  a 2, vj)l~2(a 2, vj) (40) 

Here the T-matrices are assumed to be energetically diagonal and we have 
applied the optical theorem wherever possible. 

This is as simple a form as we can give for the master equation without 
making important and possibly unjustifiable assumptions about p$~b. For 
example, if p~b(t) is diagonal for all t, the first part of Eq. (38) will vanish, 
but there is no reason to expect p~Jb to be more than energetically diagonal in 
general. There are two special cases, however. First note that for diatomic 
molecules Dlp$~b(t) is diagonal, Dlp~ib( t )  = P l ( t ) .  



Decay of Correlations in Vibrational Relaxation 61 

Next, if we look at Eq. (38) for n = 2, we see that D20~tb(t) must also be 
diagonal, D~p~b(t) = P2(t). This implies that Eq. (38) has a particularly 
simple form for n = 1, namely 

( /at)Po  = - 

v 2 v1"v 2" 

+ Z [BA(V~, vz')P~,(t) - BA(Vl', vz)P~(t)] (41) 

6. iN IT IALLY U N C O R R E L A T E D  S Y S T E M S  

In this section we examine the behavior of  our system in the absence of 
initial correlations. In particular, we will show that if a system has an un- 
correlated initial state, then the system will remain uncorrelated for all times. 

To show this, assume that the system is initially uncorrelated 

=  v lpv b( , o)fv > = (42)  
k = l  k = l  

Let Pv~(t) be the solution of Eq. (41) with initial state Pv~(0). Then P~.(t) = 
I-~ = ~ P~(t)  is a solution of Eq. (38) with initial condition Pg-(0) -- 1-~ = 1 P~(0) 
since from Eqs. (38) and (41) we find that 

p;. = ~ a p~, (43) 
]=I k C ]  "~ ~-} ]=i 

Therefore if the vibrations are initially uncorrelated, no correlations 
will ever develop. This result is the same as for systems without interactions 
among the particles m and quite unlike the result found for several systems 
with interactions. (2,3~ 

Another consequence is that if there are no vibrational correlations in 
the system, it will be completely characterized by Eq. (41) and the two- 
molecule distribution functions on the right-hand side of  this equation will 
factor. The final result is exactly the equation given in Ref. 8 (with the 
addition of a molecule-atom term). 

7. IN IT IALLY C O R R E L A T E D  S Y S T E M S  

In this section we assume that there are initial vibrational correlations 
and under certain assumptions develop closed equations for the distribution 
functions P(t )  = Pl( t ) ,  P2(t) and the correlation function U(t) defined by 

U12(t) = P~2(t) - P~(t)P2(t) (44) 

The correlation function U(t) will be zero if the two particles are uncorrelated, 
and nonzero if they are correlated. 
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We have noted before that Eq. (38) is not a closed equation for p~b(t) 
since it contains "+ ~ Pvtb �9 In order to obtain a closed equation for P2(t), we use 
the superposition assumption for p~b(t): 

p~b(1, 2, 3, t) = p~b(1, 2, t)p~b(1, 3, t)p~ib(2, 3, t) 
p~b(1, t)p~tb(2, t)p~tb(3, t) 

P~2( t)P~a( t)P~a( t ) 
eKt)P2(t)P3(t) 

(45) 

Since p~ib(t) and p~ib(t) are diagonal, the superposition form for p~a~b(t) is 
diagonal. The approximation may not be valid if p~a~b has important off- 
diagonal terms. 

We will also assume that the system is near equilibrium and linearize 
our equations. We define a function p(t) by 

P(t) = op + p(t) (46) 

where 0p is the equilibrium one-molecule vibrational distribution function. 
The correlation function U(t) is zero at equilibrium, so the linearized form of 
P2(t) in terms ofp( t )  and U(t) is given by 

P2(t) = ~176 + ~ + ~ + U~2(t) (47) 

Furthermore, Eq. (45) can be linearized to give 

p~b(1, 2, 3, t) = ~176176 + ~ a + ~ a + ~ (48) 

We find an equation for P(t) by recasting Eq. (38) in terms ofp( t )  and 
U(t) and linearizing. We obtain 

d = X oe + oe oe ,L v1' v2' vl'Pv2' + ~2'P~1" + U~1'~2'] 
~2 Vl'V2 ' 

_ B~(v,~, v~)[op~ op~ + op~ip~ + op~p~ + U~j} 

+ ~, {BA(vl, v/)[~ + p~,] - BA(V~', v,)[~ + p j }  (49) 

Then we use Eqs. (47) and (48) in Eq. (38) for n = 2 and obtain a linearized 
equation for PZ(t) in terms of U(t) and p(t). We use this result and Eq. (49) 
in the relation 

dU12 dP~2 dP2 alP2 (50) 
dt = dt P1--dT- - P2 dt 
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and obtain  a linear equat ion for U(t) :  

dt V3 
v~)[P~l,U~ ~, + Pv~,V~,v~] 

Vl'V 3 ' 
'2  - B~(vl~, vS)[P~g~v~ + Pv~v~]} 

v 3 v2",v 3" 

B [V '  2 2 

Dr_ ~ {BA(1)I, /)1 t) V v l , v 2  __ B A ( U j '  ' I ) 2 ) U v l v 2 }  

v 1 , 

+ ~ {B~(vl, ~')U~v,~ - B~(~', ~ ) U ~ }  (5~) 
v 2" 

We now have, in Eqs. (49) and (51), a complete  set o f  equat ions for  U(t) and 

p(0. 

8. H A R M O N I C  OSCILLATORS 

SO far we have made no assumpt ions  about  the transit ion probabil i t ies 
BM and B A. We will now assume that  the molecules are ha rmonic  oscillators 
and use the Landau-Te l le r  approx imat ion  for  the transit ion probabilities(*3~: 

and 

BM(V~2, g~2) = B,{v,(v2 + 1) 2~(gi, vl -- 1) A(g2, v2 + 1) 
-~ (/)I ~- 1)v2 A(0,, vl + 1) iX(g2, v2 -- 1)} 
+ B2{v,y A(g,, vl -- 1) AQ72, v2) 
+ (vi + 1) zX(~l, vl + 1) A(~2, v~) 
+ v~y A(g2, v2 - 1) A(~I, v~) 
+ @2 + 1) A(~2, v2 + 1) zX(~, v,)} (52) 

BA(vl, ~1) ---- B3{vl~, A(~I, vl -- l) + (vl + l) /X[~, vl + 1)} (53) 

where 7, = exp(-fihco0), ~oo = (el - eo)/h, the vibrat ional  frequency, and the 
constants  B1, B2, and B3 are defined by 

Bz = BM(10, 01) = BM(01, 10) 
B~ = B. (00 ,  10) = B~(00, 01) (5,~) 
Ba = B~(0, 1) 

Note  that  by the definitions in Eqs. (39) and (40), B1, B2, and Ba contain a 
density factor, NM/V or NA/V. 

For  a ha rmonic  oscillator the energy levels are ev = hoJov. Hence the 
equil ibrium distr ibution functions ~ are 

~ = [exp(-fih~ooV)]/~, exp( -~hwov)  = (1 - y)yv (55) 
v 
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The funct ions p(t) and U(t) have the fol lowing proper t ies ,  which follow 
direct ly  f rom the defini t ions and  s tandard  proper t ies  o f  d is t r ibut ion  funct ions:  

p,(t) = 0 (56) 
/) 

U,,,~(t) = ~ U~,~(t) = 0 (57) 
Vl V 2 

I f  we now use the L a n d a u - T e l l e r  t rans i t ion  probabi l i t ies  in Eq. (51), use 
Eqs. (55)-(57), and  define the funct ion Q~(t) by 

Q~(t) = ~ v2U~(t) = ~ v2Uo2~(t) (58) 
~2 V2 

we can pe r fo rm the sums over  v3 and obta in  

d U ~  
dt 

c {(vl + 1)U~+I,~ 2 - [wx(1 + v) + 7]Uv~v2 + 7vIU~-~,~= 
1 - 7  

AU (V2 -]- 1 ) U ~ l v 2 + l  - -  [V2(1 -~- 7 )  -[- ~/]Uvlv  2 .Af- 7 v 2 U v l v 2 _ 1  } 

+ (c - a){(1 - 7)2[7v~-1(v~(1 - 7) - 7 ) Q ~  + < : - 1  

x (v2(1 - 7) - 7 ) Q j }  
where 

(59) 

a = (1 - 7)(B2 + B3) (60) 

c = B 1  + a = B~ + (1 - 7)(B2 + B3) (61) 

In general  we have c >i a /> 0. Not ice  that  a depends  only on T - V  t rans i t ion  
rates and  will be zero if T - V  t rans i t ions  are not  al lowed.  The cons tant  c 
depends  on bo th  T - V  and V - V  t rans i t ion  rates. 

We  do not  have a closed equa t ion  for  U(t) since it depends  on Q~(t). 
We reduce Eq. (59) to an equa t ion  for  Q~ by mul t ip ly ing  bo th  sides by  v2, 
summing  over all v2, and  using the fact tha t  

Ov = ~ ~ v2U~,lv~ = 0 (62) 
V v I v2 

W e  ob ta in  

dQ~ 
dt 

where 

c 
- -  {(v + 1)Qv+l - [v(1 + 7) + 7]Q~ + 7vQv-1} - aQ~ 
1 -  7 

+ (c - a)(1 - 7)27 v-l[v(1 - 7) - 71 A(t) (63) 

A(t) = ~ vQv(t) = ~ vlv2Uv~v~(t) (64) 
VlV 2 
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Finally we obtain an equat ion for  A(t) by mult iplying both  sides of  Eq. (63) 
by v and summing  over v: 

dA(t)/dt = - 2 a  A(t) (65) 

Equat ions  (59), (63), and (65) fo rm a closed set of  coupled linear equat ions 
for  U, Q, and A. 

Similarly we obtain an equat ion for  p(t) by using the Landau-Te l l e r  
probabil i t ies in Eq. (49) and per forming  the sums over  v2. We find 

dpv c 
- 1 - y{(v + 1)p~+l - [(1 + y)v + Y]Pv + yvp~-z} dt 

+ (c - a){(v + 1)Q~+z - (2v + 1)Q~ + vQv-~ 
+ (1 - y)27~-1[(1 - y)v - 7,]E(t)} (66) 

where 

4 0  - O~ (67) 
E(t) -~ ~ vp~ = hwo 

~) 

The new function E(t) is thus p ropor t iona l  to the difference between the 
average vibrat ional  energy of  a molecule at t ime t and the equil ibrium average 
vibrat ional  energy. An equat ion for E(t) is obtained by mult iplying both 
sides of  Eq. (66) by v and summing  over all v: 

dE(t)/dt = - a E ( t )  (68) 

We now have in Eqs. (59), (63), (65), (66), (68), and (47) all the equat ions 
needed to find P( t ) ,  P2(t), and U(t). 

9. A S Y M P T O T I C  S O L U T I O N S  2 FOR P, p2,  A N D  U 

First we can easily solve Eqs. (65) and (68) for A(t) and E(t)" 

A(t) = A(0)e -2a~ (69) 

E ( 0  = E(0)e  -at (70) 

Then we substitute for A(t) in Eq. (63) to obtain 

dQv = e {(v + 1)Qv+l - [v(1 + y) + 7]Q~-1}-  aQv 
dt 1 - 

+ (c - a) A(0)(1 - y)2y~-l[v(1 - y) - y]e -2~t (71) 

We will solve for Q~ by a generat ing funct ion technique. We define a generat-  
ing function ~r(z, t) by 

~r(z, t) = ~ Qv(t)z ~ (72) 
V 

2 A more detailed version of these calculations is given in Ref. 14. 
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It satisfiesthe following equat ion '  

6qzr C 

0t 1 - ?, 
- -  (1 - z ) ( 1  c 1 - 7 z ) - ~ z -  a + ] _ 7 ( 1  - z )  7r 

- ( c  - a )  A ( 0 ) ( 1  - 7 )  ~ 
1 - -  Z 

(1 - 7z)  2 
e-  2or (73) 

The solution of  Eq. (73) for initial condit ion 7r(z, 0) is 

( 1  - 7 ) ~ r ( [ 1  - 7 z  - ( 1  - z ) e - ~ t ] / [ t  - 7 z  - 7 ( 1  - z ) e - ~ t ] ,  O) 
' ~ ( ~ ,  0 = 

1 - 7 z  - 7(1 - z ) e  -ct  

- 2 1 - z e -  ate - ct) -- A(0)(1 -- 7) 1 - - ~  (e-2at -- (74) 

We can find explicit forms for Q , ( t )  f rom Eq. (74) by using the inverse of  
Eq. (72), 

1 ~ ~=o  Q~(t)  = v !  Oz ~ rr(z, t)  (75) 

First we expand the first term of  Eq. (74), using Eq. (72), and obtain 

[1 - 7 z  - (1 - z)e-Ct] m 
(1 - 7 ) e  -at  ~ Qm(0)[ 1 - ~ z 2 - ~  _ _ - ~ + x  (76) 

r t l = 0  

We then expand this in a power series in e-~t and obtain 

(1 - ),)e -~t Qm(O) k k 
n = O  m = O  k = O  

k (l - z) ~ .e net (77) x ( -1)~(1  - 7)~7 ~-  ( l - - ) z ~  1 

where (~) and (~) are binomial coefficients. I f  we now take the appropriate 
z derivatives, we obtain 

m = 0  k = o  z = 0  

x Q m ( O ) ( -  1)k+z(1 - 7)~+~+17'~-~+~-Ze-"~te -at  

+ A(0)(1  - 7 ) ~ 7 ~ - ~ [ v ( 1  - 7 )  - 7](  e - ~  - -  e ~ e  - ~ )  (78)  

We are interested only in  the asymptotic  behavior of  Q~(t).  Since c > /a ,  
the only term in the sum over n in Eq. (78) that  contributes to the asymptotic  
solution is n = 0. For  n = 0 we obtain 

Qm(0)(l - 7)7~e -at  --- 0 (79) 
r n = O  
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Therefore  the  a sympto t i c  so lu t ion  for  Q~(t) is 

Or(t) ~ A(0)(I - 7)27 ~-m[v(1 - 7) - 7]e -2~t (80) 

We  n o w  use Eqs. (80) a n d  (70) in Eq. (66) for p( t )  to o b t a i n  

d c 
{(v + 1 )p~+1  - [v(1 + 7) + 7Jp~ + 7vp~_d 

dt p~ - 1 - y 

+ (c - a){E(0)(1 - 7)27~-~[v(1 - 7) - r ]e  - ~  

+ A(O)(1 - y)a7~-2[(1 - y)2v(v - 1) - 47(1 - 7)v + 2721e -2~') 
(81)  

This  e q u a t i o n  is solved in  exact ly  the same m a n n e r  as Eq.  (71) for Q~(t). The  

resul t  is 

p~(t) = Pm(O) l I 
n = 0  m = 0  k=O 

x ( -  1)k+t(1 - 7)~+z+~y~-kT~-Ze-~Ct 
+ E ( O ) ( 1  - 9 ~ < - ~ [ v ( 1  - 9 - 71(e  -~ - eC9 

+ A(O)(1 - 9 ~ 7 ~ - ~ [ ( 1  - 7)v(v - 1) - 4 7 ( l  - 7 )v  + 2 7  ~] 
x (e - 2 ~ t -  e -2~ (82) 

The  a sympto t i c  so lu t ion  is 

p , ( t )  ~ E(0)(1 - y)27~-l[v(1 - y) - 7]e -~t (83) 

We n o w  re tu rn  to Eq.  (59) for U~l,2(t ) an d  use the  a sympto t i c  so lu t ion ,  

Eq. (80), for Qv(t) to o b t a i n  

- {(v~ + 1 ) u ~ + 1 , ~  - Ivy(1 + 7) + ~,]U~v~ + 7v~u~_~,~ 
dt l - 7  

+ (v2 + l ) U v ~ + l  - [v2(1 + 7) + 7 ] U ~ 2  + y v 2 U ~ 2 - 1 }  

+ (c - a)2 A(O)(1 - y)47~[vz(1 - 7) - 71 

x y~[v2(1 - 7) - Y]e -2~t (84) 

W e  define a gene ra t ing  f u n c t i o n  F(y ,  z, t) by  

P(y ,  z, t) = s U~:~2(t)y~:z~2 (85) 
IJlV 2 

F o r  in i t ia l  c o n d i t i o n  F(y ,  z, O) we f ind the gene ra t i ng  f u n c t i o n  to be 

r (y ,  z, t) = 

(1 -- y ) 2 F ( l l  - yy - (1 -- y)e -ct 1 - yz - (1 - z)e -ct ,  O) 
7Y - 7(1 -- y)e -ct' 1 -- Vz - 7(1 -- z)e -ct 

[1 - 7Y - 7(I  - y)e-~q[1 - 7z - 7(1 - z )e -~q  

1 - y  1 - z  ( e_~  * _ e _ 2 ~ )  
+ a ( o ) ( 1  - 7)4 (1 - 7 y )  ~ (1 - 7 z )  ~ 
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+ 2 Qm( ) k (-1)~+1(1 
n = 2  m=O k=1 

F 1 - y  (1 - z )  ~ + ( l - y ) "  1 - z  l 
• [(1. -- ~7) 2 (1 - ? z 7  +1 (1 - r ~  ~ (1 - - r T ) 2 j  

x (e -~t - e-Ct)e -net (86) 

We obtain U~lv~(t ) explicitly by using the relation 

_ 1 avl 1 ao~ I 
U~i~2(t) v~ t 0y% v2 T ~z~2 P(Y' z, t) [ (87) 

�9 " y = 0 , ~ = 0  

with the result 
nl n2 

i'tl=O ~2=0 ml=O m2=O kl=O k2=O /1=0 /2=0 

ml  m2 • Umlm2(O)(k~ )(k2) \kz]{nz] \k2][n2] (;:)(in2)(ivz)(l?) 
X ynl - klyn~ - tcmyvl - tl~VZ - line - (nl + nm)ct 

+ A(0)(1 -- y)2yV~[v~(1 -- y]y'=[v2(1 -- y) -- 7](e -2~e -- e -2~) (88) 

The sums over n~ and n2 in Eq. (88) will be zero unless n~ >/ 1 and n2 >/ 1 ; 
therefore the first term is of  order e-2% The asymptotic  solution for U(t )  is 
thus 

U ~ 2 ( t  ) ~ A(0)(1 -- 7)2y~[v~(1 -- y) -- r]y~=[v=(1 - 7) - y] e-2~t 
~., p~z( t )p~( t )  (89) 

Finally we can find the asymptotic  behavior o f  P2(t) f rom Eqs. (47), (83), and 
(89): 

P2vlv2(t ) -- ~ ~ ~,, ~  + ~  

E(0)(1 - y)a{y~*-l[v~(1 - y) - Y] 
+ yv~-~[v2(1 - y) - y)}e -=* (90) 

Therefore we have shown that  the correlation function U(t )  decays at a 
faster rate asymptotically than the distribution functions P ( t )  and PU(t). 

10. C O N C L U S I O N S  

In  the last section we showed that  for harmonic  oscillators the distribution 
functions and correlation function decay asymptotically as follows: 

P2( t )  - ~ 1 7 6  as [P(t)  - 0p] ~ e-~t 
V( t ) - -+O as [P(t)  - op]2 ~ e-2~t (91) 
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This agrees with the results obtained by O p p e n h e i m e t  al. (1"2~ for other 
systems. 

We have made many assumptions in deriving Eq. (91). Among other 
things, we have assumed that the master equation (38) is valid for the system. 
One important condition is that 

tvv >> t~ot > tt . . . .  (92) 

We can increase tvv relative to 6or by decreasing OM/PA = NM/NA, the ratio 
of  the density of  molecules to that of  atoms. For any system at a given 
temperature and pressure there is a maximum value of PM/PA above which the 
master equation will no longer be valid. 

I f  the molecules are infinitely dilute in atoms, this corresponds to the 
special case of  c = a = (1 - y)B3, where B3 is the transition rate for T -V  
transitions in a molecule-atom collision. The asymptotic solutions Eq. (91) 
do not change in form since they depend only on a, not on c. 

The other special case of interest occurs when a = 0, in which case only 
V-V transitions are allowed. This might occur, for example, at very low 
temperatures. The distribution functions and the correlation function do not 
relax to absolute equilibrium (vibrational temperature equal to translational 
temperature) if a = 0. For  harmonic oscillator with only V-V transitions, 
the average vibrational energy of the molecules cannot change. This is 
reflected in Eq. (70), where E(t )  = E(0) for a = 0. The more surprising 
result is that zX(t) = A(0) for a = 0 and the system will remain correlated for 
all times if A(0) r 0. This is a consequence of our assumption that the 
molecules are harmonic oscillators. (x~ 

Our basic equations for vibrational relaxation are given in Section 5. 
In Eq. (38) we have a hierarchy of equations similar to the BBGKY hierarchy. 
For  the BBGKY hierarchy, Bogoliubov proposed that after an initial short 
time the n-particle distribution functions become time-independent func- 
tionals of  the one-particle distribution functions. (6~ 

We now investigate the validity of this hypothesis in vibrational relaxa- 
tion. First we note that from the definitions 

= U~2(t) + op~ op2 + Op~p~(t ) + Op2p~(t ) + p~(t)p2(t) 
(93) 

From Eqs. (83) and (91), we see that 

P~z(t) ",~ ~ ~ + ~ + ~ (94) 

I f  asymptotically we use Eq. (94) in Eq. (41) we obtain a closed, asymptotic 
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equat ion  for P(t )  

dP~jdt  = ~ ~ {BM(v 2, v'2)[~ 2, + ~ ] 
V2 I)'122 

- B. ( v 'L  v2)[~ 2 + ~ 
+ ~ {BA(Vl, v~')Pv~, - BA(V~', vl)Pv~} (95) 

v 1" 

This, with the add i t ion  of  a m o l e c u l e - a t o m  term, is the l inear ized version of  
the v ib ra t iona l  mas ter  equa t ion  given in Ref. 8. 

Equa t ions  (94) and  (95) show that  Bogol iubov ' s  hypothes is  is true for 
v ib ra t iona l  re laxat ion,  bu t  the t ime scales involved are much  longer  than  he 
had  proposed .  Since the re laxa t ion  t ime for  the v ib ra t iona l  corre la t ions  is 
1/2a while the re laxa t ion  t ime for the system is 1/a, there is no clear separa t ion  

of  t ime scales. This occurs,  again,  because we have focused our  a t tent ion  on 
quanti t ies  which do not  depend  on center-of-mass  posi t ions.  The  equat ions  
tha t  we have der ived conta in  a descr ip t ion  of  v ib ra t iona l  re laxa t ion  only and 
there is essential ly only one t ime scale ( l / a )  involved.  
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